Okay, so I have a sample of 500 dated trees from my posterior. How to use this method for all of them?
I haven't come across anyone actually doing this in practice. So let me work out the code right now.
This is probably wrong but I am going to try it:
#declare variables
i<-1
count<-0
final.data.frame<-data.frame()
other.data.frame<-data.frame()
#for every tree in the list
while (i <= length(mini.list)){
#for that tree run the functions;#10000for testings sake
result<-evol.rate.mcmc(mini.list[[i]],x,ngen=10000,control=list(sd2=2.0,sdlnr=3.0))
min_split<-minSplit(mini.list[[i]],result$mcmc[21:101,c("node","bp")])
mcmc<-posterior.evolrate(mini.list[[i]],min_split,result$mcmc[21:101,],result$tips[201:1001])
this.mcmc.data<-as.data.frame(mcmc)
#if the nodes produce the same edge, combine the data
if((mini.list[[1]]$edge[this.mcmc.data$node,]==mini.list[[i]]$edge[this.mcmc.data$node,])==TRUE)
{
final.data.frame<-rbind(final.data.frame, this.mcmc.data)
}
#if not put in a different data frame
else{
other.data.frame<-rbind(other.data.frame, this.mcmc.data)
count<-rbind(count, i)
}
i<-i+1
}
cat("count:", count, "\n")